
The CH3 Design for a Simple Implementation of ADI-3 for

MPICH with a TCP-based Implementation

David Ashton, William Gropp, Rajeev Thakur, and Brian Toonen

September 3, 2003

Abstract

ADI-3 is a full featured, abstract device interface used in the MPICH implementation of MPI
to provide a portability layer that allows access to many performance-oriented features of a wide
range of communication systems. ADI-3 is allows research into wide range of implementation
issues in MPI. However, because it is full featured, it contains a large number of functions that
must be implemented. To both simplify the task of experimenting with MPI implementation
issues, a simplified “channel” device is described. This device requires the implementation of only
a dozen functions but provides many of the performance advantages of the full ADI-3 interface.
This smaller interface, called CH3 (for third version of the channel interface) in turn implements
the full ADI-3 interface, providing a simple way to port MPICH to a new platform. To illustrate
the implementation issues, an implementation of CH3 using TCP sockets is described.

1 Introduction

This document outlines the CH3 “channel” device implementation of the ADI and sketches an im-
plementation of CH3 on TCP. It defines a specific interface to the low level OS TCP operations, and
outlines a way for at least the basic MPID_ routines to be implemented in terms of these abstract
operations. This document is preliminary.

The major goals of this implementation include:

1. Illustrate efficiency by minimizing the overhead on common cases. For example, a send/receive
of a single word should generate as few “extra” allocations of internal objects as possible. In
particular, this design allows the data to be sent directly without creating a MPID_Request. We
haven’t quite managed that on the receive side.

2. Provide a relatively small interface that can be used to port MPICH to new platforms. This
replaces the ADI-2 “channel” interface.

3. Provide an example that can use remote write (put) operations for data transfers.

It is not a goal of this device to provide an optimally fast implementation. This is intended to be
a relatively simple but reasonably efficient implementation.

2 Outline of the Implementation Structure

The MPID implementation makes use of a number of layers. These layers can be implemented logically
(without separate function calls) in order to avoid the overhead of function calls. In the case of the
TCP implementation, the cost of function calls is dominated by TCP network overheads.

The MPID routines are implemented in terms of a smaller set of routines that perform relatively
simple data communication operations. These are designed so that they can easily be implemented
with, for example, TCP, but are not restricted to TCP. For those familar with the “channel device”
in ADI-2, these routines represent the ADI-3 version of the channel device interface. These routines
are prefixed with CH3_ (really MPIDI_CH3_) to indicate that they belong to this interface; a complete
description of the CH3 routines is presented in Appendix A.

1

Communication: The MPID layer communicates by sending messages consisting of a message
header (called a packet header to distinguish it from an MPI message), possibly followed by data. The
MPID layer defines (internal to itself, so this discussion only applies to the CH3/TCP implementation
of MPID):

Packet Types. An enum of types, this describes roughly a dozen kinds of message that are needed
to implement MPI message-passing semantics. The packet types and what they contain include:

eager send. MPI envelope and optional request id; data immediately follows the packet (with
no separate header). An MPI envelope contains the data used to match MPI messages:
tag, sender’s rank, and context id, along with any MPI flow control (for eager messages)
and error-checking features such as datatype signatures. The optional request id is sent
when message can be cancelled.

ready send. Same as eager send but used to perform ready send operations.

eager sync send. Same as eager send but used to perform synchronous send operations. The
request id is required.

eager sync ack Request id. An acknowledgement that the receiving process has posted a
receive matching the send request.

rndv req to send. MPI envelope and send request id.

rndv clr to send. Send and receive request id

put. Address and length, followed immediately by data

rndv send. send and receive request id, followed immediately by data

cancel send req. Send request id to cancel

cancel send resp. Send request id and true/false (ack/nack) for was cancelled

flow cntl update. Flow control for eager messages and rendezvous requests. This is separate
from any low-level flow control, though it may be coordinated with it. For example, we
may include knowledge about the size of the socket buffer in this level of flow control.

Additional packet types will be defined to support MPI-2 operations such as RMA.

Packet Format. The actual layout of a packet; for each packet type, there is a corresponding packet
format defined by a structure. For version zero, all packet layouts will have the same size in
bytes; this simplifies the implementation.

Packet Handlers. The code to be invoked when a packet arives at its destination. Each of the packet
types has an associated handler. Viewed this way, the ch3 channel device has a straightforward
implementation in terms of active messages, using a restricted set of remote functions.

Questions:

1. Why are there eager sync send and ack? Synchronous sends can be accomplished by always
using the rendezvous send operation.

2. Is the “put” operation obsolete (see the new RMA support)? Note that we’d like the option
to use a put operation to complete a rendezvous send in the case that the destination buffer is
contiguous. If the put operation is included, how is completion signaled at the destination?

Queues and Connections: (Need some discussion of these, since the requests move between queues
and the read/write operations are ordered on a connection.)

2

CH3 routine brief summary: (I don’t think that these are right yet, but we need to start some-
where.) Details in Appendix A.

CH3 Request create. Create a new request. This is used with CH3_iSend, and for cases where a
completed request is required (see the discussion of MPID_Isend).

CH3 Request add ref. Add one to the request’s reference count.

CH3 Request release ref. Decrement the request’s reference count by one. Returns non-zero if
the count is non-zero and zero if the count is now zero.

CH3 Request destroy. Destroy an existing request. This is used after CH3 Request release ref
indicates that the reference count is zero.

CH3 iStartMsg. Begin a message. Return a request if the message has not been completely sent.

CH3 iStartMsgv. Like CH3_iStartmsg, but with an struct iovec.

CH3 iStartRead. Begin reading data. Return a request if the message has not been completely
received.

CH3 iSend. Send data using an existing request.

CH3 iSendv. Like CH3_iSend, but with an struct iovec.

CH3 iWrite. Like CH3_iSend, but the data sent is within the request (the active buf member).

CH3 iRead. Read data to a location specified by a request.

CH3 Progress xxx. Progress functions. CH3_Progress is responsible for dispatching incoming mes-
sages.

CH3 Init. Initialize the device and setup the initial communicators.

CH3 Finalize. Finalize the device.

CH3 InitParent. Initialize the parent communicator (if one exists).

CH3 iPut. Nonblocking, contiguous put into remote memory (optional, provided as a hook for non-
TCP methods and as a placeholder for the routines necessary for implementing MPI-2 RMA).

Questions:

1. Why is there a separate add ref and release ref from the MPIU routines? Is this because the
channel device may be multithreaded even if MPI is supporting only MPI THREAD SINGLE?

2. Does CH3 Init really setup the initial communicators? What does that mean?

3. Exactly what does CH3 InitParent do? How does this match the original ADI3 design of
MPID Init (which included a parent output argument)?

The bindings for these routines are:

/* Routines that create and destroy requests */
MPID_Request * CH3_iStartMsg(MPID_VC * vc, void * header,

MPID_msg_sz_t header_sz)
MPID_Request * CH3_iStartMsgv(MPID_VC * vc, MPID_IOV * iov, int iov_n)
MPID_Request * CH3_Request_create(void);
void MPIDI_CH3_Request_add_ref(MPID_Request * req);
void MPIDI_CH3_Request_release_ref(MPID_Request * req, int * flag);
void CH3_request_destroy(MPID_Request * req);

3

/* Routines that send or receive data and use an existing request.
These are used when incrementally processing communication, for
example, when packing and sending the next segment from a
non-contiguous datatype. Each of these is nonblocking and
indicates completion by decrementing the completion count (cc)
field in the request. */

void CH3_iSend(MPID_VC * vc, MPID_Request * sreq, void * header,
MPID_msg_sz_t header_sz)

void CH3_iSendv(MPID_VC * vc, MPID_Request * sreq, MPI_IOV * iov, int iov_n)
void CH3_iWrite(MPID_VC * vc, MPID_Request * sreq)
void CH3_iRead(MPID_VC * vc, MPID_Request * rreq)

/* Routines for progress */
void CH3_Progress_start(void)
void CH3_Progress_end(void)
int CH3_Progress(int is_blocking)
void CH3_Progress_poke(void)
void CH3_Progress_signal_completion(void)

/* Routines for startup/rundown */
int CH3_Init(int * has_args, int * has_env, int has_parent)
void CH3_Finalize(void)
void CH3_InitParent(MPID_Comm * parent)

/* Routines for RMA */
void CH3_iPut(MPID_VC * vc, void * buf, MPID_msg_sz_t buf_sz,

MPID_RAint offset, MPID_RAint cmpl_flag)
MPID_Request *CH3_iStartRead(MPID_VC * vc, void * buf, MPID_msg_sz_t buf_sz)

The use of the letter i in the names is meant to emphasize that these are non-blocking in the
MPI sense: data is not necessarily transfered before the routine returns and the transfer may continue
afterwards (this is what is different between, for example, CH3_iWrite and a write to a nonblocking
socket).

CH3 routines do not handle datatypes; they only handle contiguous data (buf,count) or struct
iovec (viewed as bytes). Communication routines are nonblocking, so they must have (a) a connection
to which they are attached (so that data is correctly ordered and sent/received) and (b) a request that
allows incremental pack/unpack. Each CH3 communication routine, in effect, makes a callback when
the communication completes. The action may be as simple as “decrement busy flag and dequeue
communication” or as complex as “pack next buffer for sending and send it”. However, we do not
require the full generality of arbitrary callback routines, so the action to take on completion will
be specified by an integer. By chosing this limitation, some operations may be inlined for greater
efficiency. The completion actions and associated “upcall” functions supplied by the device will be
discussed later.

These routines must be prepared to create actual connections (e.g., establish a socket) if there is
no connection already present. It is up to the implementation of the CH3 routines to decide how this
is accomplished.

Consequences. We can summarize the requirements for the CH3 interface as:

1. Nonblocking. Correct operation of the code is not dependent on any read or write operation
completing when first issued.

2. Contiguous (or simple iovec) data. For simplicity, only contiguous byte ranges (or Unix-style
iovec) data moves are handled at the lowest level

4

3. Correctness and ordering. MPI requires that the message envelopes are ordered; data transfers
must also arrive in expected order. However, individual data transfers are not ordered. Com-
pletion of a data transfer guarantees only that all the data have arrived, not the particular order
of arrival.

4. Handshakes. Some communication, particularly rendezvous transfers, requires handshakes or
cooperation between sender and receiver

5. Performance. Low latency for short messages.

These requirements suggest that there be a single data structure that holds the progress of all com-
munication. In particular, to correctly support the first (nonblocking) requirement, there must be a
queue (a queue, not a list or a heap, because of the third (ordering) requirement) of pending data
transfer operations. Because of the second (contiguous) requirement, combined with the need to
handle general (possibly noncontiguous) MPI datatypes, we must be able to transfer data in parts
(segments). This requires having the option of invoking a routine when a data transfer completes (the
callback described above); further, it requires that the queue element not be automatically removed
from the data transfer queue when the current communication completes because more data for this
communication may be on the way.

Because of the fourth (handshake) requirement, once communication has been initiated, the same
data structure should be used with any communication that requires a handshake, rather than gener-
ating a new data structure for each individual communication operation.

The data structure that satisfies these requirements is the MPID_Request. Further, once communi-
cation is started (e.g., with CH3_iSend), further data transfers are accomplished by either placing the
request into the queue of pending data transfers or by updating a request that is already the active
request (rather than creating a new request).

To handle the communication of data, the CH3 device needs the following fields in the MPID_-
Request: These need to be organized in a hierarchical way. Partially done.

match Matching information: rank, tag, and context.

Rendezvous send information user buf. Pointer to the user buffer.

user count. Number of

datatype. Datatype describing the user buffer.

Information for processing data buffers segment. Segment used to process noncontiguous data.

segment size. Size of the segment (in bytes).

segment first. Current offset into the segment.

vc. A pointer to the virtual connection being used to satisfy the request.

iov. I/O vector describing the buffer to be sent or received.

iov count. Number of entries in the iov.

ca. Completion action. This indicates what operation should be performed when a data transfer is
complete.

tmpbuf. Pointer to a temporary buffer

tmpbuf sz. Size of the temporary buffer (not necessarily the same as the size of the occupying the
buffer). The SRBuf flag in the state field indicates if this temporary buffer is a buffer from the
send/receiver buffer pool or an unexpected eager

recv data sz. Size of the message data.

sender req id. Handle of sender’s request associated with this request.

5

state A series of bit fields describing the state of the request.

next A pointer to the next request in the send or receive queue.

Thus, a ch3 struct is included in the MPID_Request structure.

typedef struct
{

MPIDI_Message_match match;
void * user_buf;
int user_count;
MPI_Datatype datatype;
MPID_Segment segment;
MPIDI_msg_sz_t segment_size;
MPIDI_msg_sz_t segment_first;
MPID_VC *connection;
MPID_IOV iov;
int iov_count;
MPIDI_CA_t ca;
void * tmpbuf;
MPIDI_msg_sz_t tmpbuf_sz;
MPIDI_msg_sz_t recv_data_sz;
MPI_Request sender_req_id;
unsigned state;
struct MPID_Request * next;

} ch3;

The TCP channel also requires fields in the MPID_Request to properly handle the communication
of data:

iov offset. Current element in the I/O vector.

pkt. Space for buffering packet headers associated with the request.

Like the CH3 device, the TCP channel adds a structure of its own, namely the tcp struct, to the
MPID_Request structure.

typdef struct
{

int iov_offset;
MPIDI_CH3_Pkt_t pkt;

} tcp;

2.1 Remote Memory Operations in the CH3 Design

This interface includes a remote put operation CH3_Put. By having a CH3 routine that can perform a
contiguous put to remote memory, we make it easy to experiment with RMA-capable networking (such
as VIA or Infiniband) without requiring a completely new device implementation. However, this is
an optional routine (at least while we target only MPI-1) and need not be implemented. The packet
handler descriptions given show how a put operation can be implemented, even in a TCP/sockets
environment.

In order to support MPI-2 remote memory operations, additional routines are necessary.
All of the routines in this section except those defined under the asynchronous operations section

are optional. The channel implementation will define CPP variables of the same name as the routine
if an implementation of that routine is available.

6

2.1.1 Active target routines

The following three routines may be used to perform active target communication. They may not be
used for passive target communication as they are not require to complete asynchronously.

int MPIDI_CH3_iPutc(MPIDI_VC * vc, const void * buf, int count,
MPID_RAint raddr, MPID_RAint rdaddr)

int MPIDI_CH3_iGetc(MPIDI_VC * vc, void * buf, int count,
MPID_RAint raddr, MPID_RAint rdaddr)

int MPIDI_CH3_iAccc(MPIDI_VC * vc, const void * buf, int count, MPI_Op op,
MPID_RAint rbaddr, MPID_RAint rdaddr)

. where the parameters have the following meanings:

vc the virtual connection over which the operation takes place

buf pointer to the local buffer

count number of bytes (both local and remote)

rbaddr address of remote buffer (may be 0 if count is zero)

rdaddr address of a remote integer counter to be decremented when operation completes (may be 0)

op predefined MPI_Reduce operations (including MPI_REPLACE)

Note: the original specification of MPID_iPut() in the CH3/TCP design document called for the
use of MPID_RAint. I (Brian) continued to use it here, but am not convinced it is necessary. We said
during the design meeting that these routines would only be used on homogeneous systems. If that is
true, MPID_RAint can be replaced with MPI_Aint.

2.1.2 Passive target atomic operations

The following routines are intended for passive target communication. If implemented, they must
complete asynchronously (independent of remote process activities).

int MPIDI_CH3_iPTPutc(MPID_Win * winp, MPIDI_VC * vc,
MPIDI_CH3_Win_lock_type_t type,
MPIDI_CH3_Win_lock_state_t state,
const void * buf, int count,
MPID_RAint rbaddr, MPID_RAint rdaddr)

int MPIDI_CH3_iPTGetc(MPID_Win * winp, MPIDI_VC * vc,
MPIDI_CH3_Win_lock_type_t type,
MPIDI_CH3_Win_lock_state_t state,
void * buf, int count,
MPID_RAint rbaddr, MPID_RAint rdaddr)

int MPIDI_CH3_iPTAccc(MPID_Win * winp, MPIDI_VC * vc,
MPIDI_CH3_Win_lock_type_t type,
MPIDI_CH3_Win_lock_state_t state,
const void * buf, int count, MPI_Op op,
MPID_RAint rbaddr, MPID_RAint rdaddr)

where the parameters have the following meanings:

7

winp pointer to the window object (necessary for some implementations to access data structures
which manage exclusive access to the window). Question: Whose window (local or remote)? Is
this a pointer or a handle or an MPID_RAint?

vc the virtual connection over which the operation takes place

type MPIDI_CH3_WIN_LOCK_EXCLUSIVE or MPIDI_CH3_WIN_LOCK_SHARED. Question: Why not use
MPI types (MPI_LOCK_EXCLUSIVE and MPI_LOCK_SHARED)?

state MPIDI_CH3_WIN_LOCK_START, MPIDI_CH3_WIN_LOCK_CONTINUE, or MPIDI_CH3_WIN_LOCK_STOP
Question: rather than emphasizing “lock”, how about MPIDI_CH3_WIN_ACCESS_BEGIN, MPIDI_-
CH3_WIN_ACCESS_CONTINUE, and MPIDI_CH3_WIN_ACCESS_END.

buf pointer to the local buffer

count number of bytes (both local and remote)

rbaddr address of remote buffer (may be 0 if count is zero)

rdaddr address of a remote integer counter to be decremented when operation completes (may be 0)

op predefined MPI_Reduce operations (including MPI_REPLACE)

2.1.3 Local passive target locks

The following routines are used to control access to the local window. If any of the passive target
atomic operations are defined, then these functions must be defined.

int MPIDI_CH3_Win_local_lock(MPID_Win * winp, MPIDI_CH3_Win_lock_type_t
type)

int MPIDI_CH3_Win_local_unlock(MPID_Win * winp)

where the parameters have the following meanings:

winp pointer to the window object (necessary for some implementations to access data structures
which manage exclusive access to the window)

type MPIDI_CH3_WIN_LOCK_EXCLUSIVE or MPIDI_CH3_WIN_LOCK_SHARED Question: Why not use
MPI types (MPI_LOCK_EXCLUSIVE and MPI_LOCK_SHARED)?

2.1.4 Passive target memory allocation

The following routine allocates memory upon which the passive target operations can be performed.
If any of the passive target atomic operations are defined, then this function must be defined.

int MPIDI_CH3_alloc_mem(MPID_Win * winp)

We also require the corresponding free routine, along with a routine to test whether memory was
allocated with this routine (for error detection). The ADI3 spec has these routines; I propose that
CH3 simply implement them.

8

2.1.5 Asynchronous operations

The following routine sends an operation request to be performed asynchronously by a remote process.
This routine is similar to MPIDI_CH3_iStartmsgv() except that the operation must be handled by
a remote asynchronous agent. If the send does not complete immediately, this routine returns a
request object. When the asynchronous agent completes the send, it calls MPIDI_CH3U_Handle_-
async_send() with sreq->ch3.ca set to MPIDI_CH3_CA_COMPLETE, causing the completion counter
(*sreq->cc_ptr) to be decremented.

int MPIDI_CH3_arov(MPIDI_VC * vc, MPID_IOV * iov, int iov_n,
MPID_Request **sreqp)

where the parameters have the following meanings:

vc the virtual connection over which to send the request

iov an I/O vector the first element of which contains a packet header (MPIDI_CH3_Pkt_t) defining
the operation to be performed; if the send cannot be completed immediately, both the packet
header and the I/O vector will be copied internally, allowing both of them to be allocated on
the stack.

iov n number of entries in the I/O vector

sreqp pointer to a send request object pointer (may be NULL if the send completed locally before
the routine returns)

The following routine is the same as MPIDI_CH3_arov() except it takes an existing request allowing
remote operation requests that exceed the maximum number of I/O vector entries. When the data
described by I/O vector is completely sent (or buffered), MPIDI_CH3U_Handle_async_send() will be
called by the asynchronous agent. sreq->ch3.ca should contain a completion action so that MPIDI_-
CH3U_Handle_async_send() can act appropriately.

int MPIDI_CH3_alrov(MPIDI_VC * vc, MPID_Request * sreq,
MPID_IOV * iov, int iov_n)

where the parameters have the following meanings:

sreq pointer to an existing send request object

(other parameters the same as MPIDI_CH3_arov()).
The following routine is used to continue sending data as part of a previously started remote

operation request. The buffers to be sent are defined by sreq->ch3.iov and sreq->ch3.iov_-
count. MPIDI_CH3U_Handle_async_send() will be called by the asynchronous agent when the send
is complete (or buffered). sreq->ch3.ca should contain a completion action so that MPIDI_CH3U_-
Handle_async_send() can act appropriately.

int MPIDI_CH3_awrite(MPIDI_VC * vc, MPID_Request * sreq)

where the parameters have the following meanings:

vc the virtual connection over which to continue sending data

sreq pointer to the send request object

The following routine requests that data continue to be read by the asynchronous agent and
be placed in the buffers defined by rreq->ch3.iov and rreq->ch3.iov_count. When the data
described by I/O vector is completely read, MPIDI_CH3U_Handle_async_recv() will be called by the
asynchronous agent. rreq->ch3.ca should contain a completion action so that MPIDI_CH3U_Handle_-
async_recv() can act appropriately.

9

int MPIDI_CH3_aread(MPIDI_VC * vc, MPID_Request * rreq)

where the parameters have the following meanings:

vc the virtual connection over which to read data

rreq pointer to the receive request object

The following routine is called by the asynchronous agent (in the channel implementation) when
an asynchronous operation request arrives. If data follows the packet header, a receive request object
must be created before the remainder of the data can be read using MPIDI_CH3_aread().

int MPIDI_CH3U_Handle_async_pkt(MPIDI_VC * vc, MPIDI_CH3_Pkt_t * pkt)

where the parameters have the following meanings:

vc the virtual connection over which to send the request

pkt the packet header

The following routine is called by the asynchronous agent when a previously requested read (using
MPIDI_CH3_aread()) has completed.

int MPIDI_CH3U_Handle_async_recv(MPIDI_VC * vc, MPID_Request * rreq)

where the parameters have the following meanings:

vc the virtual connection over which to read data

rreq pointer to the receive request object

The following routine is called by the asynchronous agent when a previously requested write (using
MPIDI_CH3_awrite()) has completed.

int MPIDI_CH3U_Handle_async_recv(MPIDI_VC * vc, MPID_Request * sreq)

where the parameters have the following meanings:

vc the virtual connection over which to read data

sreq pointer to the send request object

2.2 Thread Safety

Thread safe manipulation of the message queues requires careful handling. Section 5 discusses the
message queue manipulation routines in depth; Section 2.4 sketches some of the routines that are used
for the message-queue operations. In short, these routines performed atomic queue update operations,
such as “find or insert” rather than separate “find” and “insert” operations.

2.3 Data Structures

To allow the greatest efficiency, most of the data structures are visible to all layers (below the user-
layer). However, parts of the data structures may be defined by and used exclusively by a particular
layer. For example, the MPID_Request contains both fields used by the MPI implementation layer
(e.g., the completion counter) and fields used only by the channel implementation layer. This is
essentially a subclassing approach, but implemented directly in C.

The assignment of data structures to layers is as follows.

MPI application layer. (User programs) Owns and allocates MPI_Status.

10

MPI implementation layer. (E.g., implementation of MPI_Isend in terms of MPID_Isend.) Owns
and allocates communicators, datatypes, attributes, groups, files, window objects, keyvals, and
error handlers.

MPID Channel device layer. (E.g., implementation of MPID_Isend in terms of CH3.) Owns and
allocates packets. Defines packet type handlers. Owns and allocates segments.

CH3 implementation layer. Owns and allocates connections and requests.

2.4 Utility Routines

(not written yet) This section should describe the queue operation routines, such as the find-or-post
or find-or-allocate (FOA) operations.

CH3U Request FDU or AEP. Find a request in the unexpected message queue and dequeue it;
if one is not found, create a request and add it to the posted receive queue.

CH3U Request FDP or AEU. Like CH3U Request FDU or AEP, but first checks the posted receive
queue, and if not found, adds to the unexpected message queue. This routine is called by a
message handler while the previous routine is called by one of the MPI receive routines.

CH3U Request FU. Find a matching request in the unexpected queue. Return a pointer to the
request or NULL if a matching request was not found. Note: this routine does not remove the
request from the unexpected queue.

CH3U Request FDU. Given the sender’s request handle and matching information, find a match-
ing request in the unexpected queue. Return a pointer to the request or NULL if a matching
request was not found.

CH3U Request DP. Given a pointer to the request structure, dequeue the request from the posted
message queue. Return true if the request was dequeued or false if the request was not found.

CH3U Request FDP. Given message match information, find a matching request in the posted
queue. If found, dequeue it and return a pointer to the request; otherwise return NULL.

CH3U Request create. Initialize the ch3 structure in a MPID Request. This routine should be
called by CH3_Request_create.

CH3U Request destroy. Destroy any objects attached to the ch3 structure in a MPID_Request.
This routine should be called by CH3_Request_destroy.

CH3U Request decrement cc. Atomically decrement the completion counter in the request. If
the counter reaches zero, return zero; otherwise return a non-zero value.

CH3U Request complete. This is a convenience routine. It calls CH3U_Request_decrement_cc
followed by MPID_Request_release and CH3_Progress_signal_completion if all operations
associated with the request are complete.

CH3U Request load send iov. (Re)load the I/O vector in a send request.

CH3U Request load recv iov. (Re)load the I/O vector in a receive request.

CH3U Request unpack uebuf. Unpack data for a unexpected eager message in the user’s message
buffer.

CH3U Request unpack srbuf. Unpack data in a send/receive buffer into the user’s message buffer.

CH3U Buffer copy. Copy the contents of a user’s send buffer into a user’s receive buffer.

11

CH3U SRBuf alloc. Allocate a send/receive buffer and set req->ch3.tmpbuf to point to the buffer.
Send/receive buffers are temporary buffers used to hold a portion of the message data when user’s
buffer is non-contiguous. The desired size of the buffer is specified when calling this routine;
however the actual buffer size may be different. req->ch3.tmpbuf will contain the actual size
of the buffer.

CH3U SRBuf free. Free a previously allocated send/receiver buffer.

Bindings:

request = CH3U_Request_FDU_or_AEP(source, tag, context_id, &found)
request = CH3U_Request_FDP_or_AEU(msg_match, &found)
request = CH3U_Request_FU(source, tag, context_id)
request = CH3U_Request_FDU(handle, msg_match)
flag = CH3U_Request_DP(reqptr)
request = CH3U_Request_FDP(msg_match)
CH3U_Request_create(reqptr)
CH3U_Request_destroy(reqptr)
CH3U_Request_decrement_cc(reqptr, &count)
CH3U_Request_complete(reqptr)
mpi_errno = CH3U_Request_load_send_iov(reqptr, iov, iov_n)
mpi_errno = CH3U_Request_load_recv_iov(reqptr)
mpi_errno = CH3U_Request_unpack_uebuf(reqptr)
mpi_errno = CH3U_Request_unpack_srbuf(reqptr)
CH3U_Buffer_copy(sbuf, scount, sdatatype, smpi_errno,

rbuf, rcount, rdatatype, &data_sz, rmpi_errno)
CH3U_SRBuf_alloc(reqptr, size)
CH3U_SRBuf_free(reqptr)

2.5 NonContiguous Datatypes

The CH3 interface supports the direct communication of either single contiguous blocks of data or
data represented by a standard iovec structure. However, some of the most common noncontiguous
datatypes encountered in MPI programs are not efficiently represented by an iovec structure; these
include both strided and block-indexed types. While the ADI-3 interface allows the device to directly
handle all datatypes, the CH3 interface must pack and unpack datatypes that are noncontiguous.
To allow arbitrarily large messages to be sent with the CH3 device, packing and unpacking may be
done incrementally. The routines such as CH3 iWrite and CH3 iRead are used for transfering these
incrementally packed buffers.

3 Pseudo-code for some of the MPID routines

This section outlines the pseudocode for some of the major MPID routines. Note that many of these
operations only begin a communication. The completion of the communication often takes place with
the communication agent. The routines that are implemented within the communication agent, which
are called message handlers, are described in Section 4.

3.1 Sending

The code for MPID_Isend and MPID_Send is shown below. The code for the other MPID send routines
is similar, with the appropriate choice of eager (for rsend) or rendezvous (for ssend) operations. The
envelopes for ready-send messages should include a flag that indicates that they are ready-send so
that the user-error of an unmatched ready-send can be detected and reported.

Question: is this code up-to-date? Don’t we send first and allocate the packet only if we need to?

12

MPID_Isend()
{

decide if eager based on message size and flow control
if (eager) {

create packet on stack
fill in as eager send packet
request = CH3_request_create()
if (data contiguous)

CH3_iSendv(request, iov)
else {

create pack buffer
pack into buffer
CH3_iSendv(request, iov)
if (complete)

free pack buffer
else

save location of pack buffer in request
}

}
else (rendezvous) {

create packet on stack
request = CH3_request_create();
fill in request
fill in packet as rndv_req to send (include request id)
CH3_iSend(request, packet)

}
return request

}

An alternative to creating packets on the stack is to allow the CH3 layer to provide a way to create
a new packet. The semantics would allow simple allocation as above, but would also allow the CH3
layer to provide specially allocated memory. For the near term, however, we will not include this
enhancement.

Another alternative is a “fast send” for short messages. This would allow an implementation to
optimize for the low-latency case; for example, a shared-memory implementation could use special
allocation routines to reduce the number of operations. This may be a better approach than trying
to find a general model that achieves the lowest-possible latency.

MPID_Send is slightly different because we want to avoid allocating a request if possible.

MPID_Send()
{

decide if eager based on message size and flow control
if (eager) {

create packet on stack
fill in as eager send packet
if (data contiguous) {

request = CH3_iStartmsgv(iov)
// note that the request will be NULL if the message was sent
}

else {
create pack buffer
pack into buffer
request = CH3_iStartmsgv(iov)
if (!request)

free pack buffer

13

else
save location of pack buffer in request

}
else (rendezvous) {

.. exactly like MPID_Isend
}
return request

}

3.2 Receiving

Both MPID_Irecv and MPID_Recv use similar code.

MPID_Irecv()
{

CH3_Progress_poke
request = MPIDI_CH3U_Request_FPOAU(source, tag, context_id, &found)
if (found) {

/* Message was found in unexpected list. Eager data is stored
in the request */

if (eager) {
copy data
free eager buffer used for data
mark request completed
}

else {
rendezvous
create packet on stack
fill in as rndv_clr_to_send
CH3_iSend(request, packet)
}

}
else {

fill in request
CH3U_Request_change_state(request, waiting for match)

}
}

Note that this code cannot avoid the allocation of a request, even in the case of MPID_Recv and
where the data is already available in the socket, since a request must be returned to the user. To
optimize for low latency in the case of a small, contiguous transfer, we may want to have a version of
MPID_Recv that looks something like

if (datatype is contiguous and small &&
receive queue for this tag/context/source is empty &&
no active receive request) {
Try to read next packet
if (packet read) {

if (packet type is eager &&
MPI envelope matches this receive) {
transfer data to destination
if (transfer complete) return # NULL request since done.
else {

create request, make active
return request

14

}
}
else {

dispatch packet (e.g., same code as in progress engine)
}

}
}
/* fall through in case we didn’t receive the message */
MPID_Irecv(...)

An advantage of this is that it avoids both the need for allocating a request and it avoids calling the
Progress routine (note that we must still ensure that the progress routine is called sufficiently often).
The somewhat complicated tests are necessary to ensure that correct message ordering is preserved.
Note that the test “receive queue for this tag etc.” need not be perfect in that false negatives (queue
may be nonempty) are allowed, since this only drops the code into the MPID_Irecv case. For example,
a simple test to see if the queue is empty is sufficient.

This example also serves to illustrate why the MPID interface includes blocking receive; there is
a potentially important optimization that is otherwise not available without a blocking receive. Also
note that this routine cannot be implemented strictly in terms of the CH3_xxx routines, because the
“try to read next packet” step requires access to the underlying message buffers. Question: we could
provide a routine to do this (see the progress engine discussion under “Completion”); should we?

3.3 Completion

The ADI does not provide completion routines that correspond directly to the MPI completion routines
(e.g., MPI_Test). Instead, there are routines to make progress on communication. To test whether
a request is complete, the busy flag is checked. The implementation of the CH3_Progress routine is
shown with the other CH3 routines in Section A.8.

3.4 Persistent Requests

MPI persistent requests allow the MPI implementation to setup the data structures necessary for
communication in advance of initiating the communication. This section briefly sketches these routines
and their datastructures.

MPID_Send_init()
act_request = CH3_request_create();
request = CH3_request_create();
request->act_request = act_request;
request->send_packet = MPIU_Malloc(packet);
setup fields in request, act_request, send_packet,

including a free-handler for the request
Ensure that the virtual connection is initialized
return request

Rather than use MPIU_Malloc, we may want a CH3 routine that can return a packet that may not be
allocated on the stack (e.g., a persistent packet).

The reason that a packet is allocated here rather than off the stack is that this allows us to fill
in the packet once during the MPID Send init step, rather than during each MPID Start step. Note
that MPID Request free must free this packet and the act request.

Persistent requests are initiated by invoking the start function in the request. The implementa-
tion of MPI_Start and MPI_Startall calls the start_fn in each request. This provides a common
approach for both user-defined requests (called generalized requests in MPI-2) and point-to-point
persistent communication requests.

15

4 Pseudo-code for Message Handlers

These are the routines that are called by the progress engine on receiving a message packet. All of
these assume that the entire packet header has been read but that any following data may not yet
have been read.

Question: The Unix socket interface supports a “low watermark” setting that guarantees that at
least that many bytes are available when select or poll returns. Should we use this in the code?
What are the performance implications?

4.1 EagerSend

Action invoked by the receiver of an eagerly sent message. The data for the message is immediately
behind the message header (eagersend packet).

request = MPIDI_CH3U_Request_FPOAU(&packet->msg_match, &found)
if (found) {

/* Message was already posted */
CH3_iRead(request)

}
else {

/* Message is unexpected */
ifdef HAVE_ERROR_CHECKING

if (message is readysend) {
signal error (and return a message to sender)
arrange to read and discard data
(simply allow the read as below; set the state to discard
when the transfer is complete)

}
endif

request->active_buf = CH3U_AllocateStorageFromEagerBuffer(len)
request->active_buf_len = len
CH3_iRead(request)

}

This routine uses CH3 iRead to read the data that follows the message header into the location
previously saved in the request (when the request was posted). We don’t pass the buffer location to
CH3 iRead because (a) the location is already present in the request and (b) passing it as an argument
to the routine unnecessarily adds to function call overhead.

4.2 RndvReqToSend

Action invoked by the reciever of a rendezvous message.

request = MPIDI_CH3U_Request_FPOAU(&packet->msg_match, &found)
if (found) {

if (dest buffer is contiguous)
create rndv-ok-to-put packet on stack
fill in packet
CH3_iSend(request, packet)

else
create rndv-ok-to-send packet on stack
CH3_iSend(request, packet)

}
#ifdef HAVE_ERROR_CHECKING

else if (ready-send) {
return an error message to sender (error msg packet)

16

tmp_request = CH3_iStartMsg(packet);
if (tmp_request) tmp_request->ref_count--;
MPIDI_CH3U_DeQueue_unexp(request)

}
#endif

Question: it may be possible to reuse the incoming packet as the outgoing packet, thus saving some
stores to the packet structure.

4.3 RndvClrToSend

Action invoked by the sender of a rendezvous message on receipt of an acknowledgement from the
receiver.

Convert request id (in packet) to pointer to request structure
create RndvData packet on stack
iov[0].ptr = address of packet
iov[0].len = sizeof(packet)
if (data contig) {

iov[1].ptr = data_address
iov[1].len = data_len
CH3_iSendv(request, iov, 2)

}
else {

Create pack buffer
Pack first segment worth
iov[1].ptr = address of pack buffer
iov[1].len = lenght of packed data
request->state = segment_sending
CH3_iSendv(request, iov, 2)

}

4.4 Put

Action invoked by reciever of a put packet.

Read Address from packet
request = CH3_iStartRead(address, count)
if (request) {

Save flag address in request
set request state so that on completion of data transfer, flag is

decremented
}
else {

decrement flag (address provided by packet)
}

Note: We do need a request for the put operation to handle incomplete data transfers; by setting the
request’s reference count, we can ensure that the request is recovered once the data transfer completes.
However, in the case where a put is used to provide the data for a rendezvous receive, there is already
an available request. Question: do we want a form of put that takes advantage of having an existing
request? In that case, instead of the remote flag address, the remote request id can be used.

Note that if the read completes, the returned request is NULL.

17

4.5 RndvData

Action invoked by the receiver of data sent in response to an ok to send after a rendezvous message.

Convert request id (in packet) to pointer to request structure
/* memory location already set as active buf in request */
CH3_iRead(request)

4.6 CancelSend

Action invoked by the receiver of a request to cancel a previously sent RndvReqToSend.

Convert request id (in packet) to pointer to request structure
If (request is in unexpected message queue)

if (already matched) {
create CancelSendAck(failed) on stack
newrequest = CH3_iStartmsg(packet)

}
else {

Remove and discard request
create CancelSendAck(succeeded) on stack
newrequest = CH3_iStartmsg(packet)

}
else {

create CancelSendAck(failed) on stack
newrequest = CH3_iStartmsg(packet)

}
if (newrequest) newrequest->ref_count--;

Note that the above code must access the message queues atomically in the multi-threaded case in
order to preserve correctness. Question: should the queue access part of this be an CH3U utility
routine?

4.7 CancelSendAck

Action invoked by the receiver of a request that acknowleges a CancelSend request.

Convert request id (in packet) to pointer to request structure
Set request to indicate whether cancel succeeded
If succeeded, remove from pending send list

As for the CancelSend message, this must act atomically on the message queue.

4.8 FlowControlUpdate

Flow control is used at the MPI level to control the use of eager buffers and requests for unex-
pected messages. Possible choices for flow control include IMPI-style control (http://impi.nist.
gov/impi-report/impi-report-node54.html) or an integrated count of the number of envelopes
and buffer space used (IMPI only counts “packets”). Flow control is not optional, though the early
implementation can ignore this.

One possibility is to include flow control updates on all packets; this ensures that in typical
“balanced” communication, a separate flow control packet is never needed.

The original MPICH-1 flow control counted envelopes and data separately, encoding the number
of each consumed since the last communication within a single 32-bit integer field in each message
packet.

(need to add more details on flow control.) The biggest issue is the handling of eager buffer
space. The problem is fragmentation; you can’t simply count the number of bytes. One possibility is

18

http://impi.nist.gov/impi-report/impi-report-node54.html
http://impi.nist.gov/impi-report/impi-report-node54.html

to allocate space in a buddy system and count the number allocated in each buddy pool (each pool
contains identically sized blocks). Note that because the maximum size of an eager message is limited,
we don’t really need to worry about a message being too large for a single fragment in the eager buffer
bool.

5 Message Queues

This section describes the routines for handling the message queues. For thread safety, the queues
of posted receive requests and of unexpected messages are accessed atomically rather than through
separate routines.

In addition, the match condition is based on data that is passed in the packet and is stored in the
type MPID_Message_match:

typedef struct {
int32_t tag;
int16_t source;
int16_t context_id;

} MPID_Message_match;

To exploit longer-word instructions where available, this is really a union:

typedef union {
struct {
int32_t tag;
int16_t source;
int16_t context_id;
} match;
int32_t match32[2];

#ifdef HAVE_INT64_T
int64_t match64;

#endif
} MPID_Message_match;

On systems with int64_t, the match test is a single line of C code; if the hardware has 64-
bit integer operations, it is a single compare instruction. Otherwise, the code shown here must be
expanded to test two 32-bit fields.

MPIDI_CH3U_Request_FPOAU(int source, int tag, int context_id, int *found)
/* Look in unexpected queue for a match */
MPID_Message_match m.match = {tag, source, context_id};
if (tag != MPI_ANY_TAG && source != MPI_ANY_SOURCE) {

for (r = unexpected_queue->head; r; r = r->next) {
if (r->match.match64 == m.match64) {

remove r from unexpected queue
found = 1
return r

}
}

}
else {

/* Must do any match */
MPID_Message_match mask.match = {0xffffffff, 0xffff, 0xffff};
if (tag == MPI_ANY_TAG) { mask.match.tag = 0; m.match.tag = 0; }
if (source == MPI_ANY_SOURCE) {

mask.match.source = 0; m.match.source = 0; }

19

/* A further optimization for no wildcards would skip the mask
step */

for (r = unexpected_queue->head; r; r = r->next) {
if ((r->match.match64 & mask.match64) == m.match64) {

remove r from unexpected queue
found = 1
return r

}
}

}
found = 0;
/* If we get here, the message was not found */
request = CH3_request_create()
request->match.match = { tag, source, context_id };
request->mask.match = { like the above };
/* Add to tail of posted recieves */
posted_receive->tail->next = request;
posted_receive->tail = request;
return request

The above code shows an example of optimizing for code that does not use wildcards for the tag or
source.

The next routine is always called in response to receiving a message packet, and hence simply
passes the part of the packet that contains the tag, context, and source values directly to the routine.
It is essentially the same as MPIDI_CH3U_Request_FPOAU, except that it checks first in the posted
receive queue and, if the data is not found, adds to the unexpected receive queue. The wildcard
match testing is slightly different as well.

MPIDI_CH3U_Request_FUOAP(MPID_Message_match *, int *found)
/* Look in posted queue for a match */
for (r = posted_queue->head; r; r = r->next) {

if (r->match == (m & r->mask)) {
remove r from posted queue
found = 1
return r

}
}
found = 0;
/* If we get here, the message was not found */
request = CH3_request_create()
request->match = { tag, source, context_id };
/* Add to tail of unexpected recieves */
unexp_receive->tail->next = request;
unexp_receive->tail = request;
return request

Cancel operations require that requests be removed from the queues.
This routine is required for cancelling sends.

MPIDI_CH3U_DeQueue_unexp(int handle)
for (r = unexpected->head; r; r = r->next) {

if (r->handle == handle) {
remove r from list and return it

}
return NULL

20

(Recall that the integer id of the request is called the handle.)
This routine is required for cancelling receives

MPIDI_CH3U_DeQueue_posted(int handle)
for (r = posted->head; r; r = r->next) {

if (r->handle == handle) {
remove r from list and return it

}
return NULL

The above are appropriate for rare operations such as cancel that can afford to search through po-
tentially long lists and can even use locks to guarantee exclusive access to the data structures. Note
that the description of the cancel routines do not use these routines but they should.

5.1 Debugger Interface

(still to do; this section will describe how to support the message queue operations that are part of
the debugger interface. Note that the debugger interface provides for both a receive and send queue
interface; the debugger can get a list of the pending send and receive operations, along with the
unexpected messages.

6 Implementing mpiexec

(This is a temporary spot for these remarks, since they may apply to more than just the TCP device.)
There are multiple possible implementations for mpiexec and each has its own advantages and

disadvantages. We might implement all of them, but we should implement the quickest-to-implement
first.

As MPD console program. This is ready-to-go as a minor change to mpdcon.c, except that the
PMI interface might need to be updated to match the current specification. A version of MPI_-
Info is needed for the new PMI_Spawn, but not for anything else, so MPI-1 routines should be
OK. I.e, the database part of PMI is already running. All handling of stdio is done.

As a PMI program. This requires the above plus implementation of PMI_Spawn, at least for use by
console. It could also be built to interact with a scheduler. This (using PMI_Spawn to start the
initial processes as well as for the implementation of MPI_Spawn) was the “original” plan.

As an MPI program. This is the idea in the current MPICH2 document. It relies on MPI_Connect,
etc. It requires the above plus the MM component of the PMI interface, to set up the connections.
This approach as the advantage of providing a “universal” mpiexec.

As an “immediate scheduler”. This makes mpiexec into a stand-in for the scheduler component
of the Scalable System Software Project. It is much like the “MPD console” option, but instead
of using the existing console code to contact a local MPD, it sends the standard XML defined by
the SSS project to the MPD, which is standing in for an arbitrary process startup component.
It requires hooking in an XML parser like xpat into the MPD and having mpiexec emit XML
code.

As a “one-host-only” process starter. The mpiexec process could simply fork the application
processes. This requires a new but simple implementation of the put/get/fence part of the PMI
interface. The original mpiexec process could become the database server part after forking.

The first and last options seem to present the shortest paths to getting something running that
we can use to debug the coming avalanche of code.

Any of these need to contain the argument-processing code for the defined standard arguments to
mpiexec. These are defined in Volume 1 of MPI—The Complete Reference, starting on page 353.
There are multiple approaches to dealing with arguments.

21

Plain. Use straightforward code as in p4_args.c.

Fancy. Use an “options database” approach, as in PETSc.

We will want to do both, but the first option can be implemented immediately, especially if we
postpone some of the more elaborate argument lists and require that those be used with a file. We
have to define the format of the file for use with the -file option. There are three possibilities.

Keyword=value pairs. This is easy to read, and we can use the parsing routines from MPD, so we
are practically already done.

XML. We could match the process-startup file to the format of a process-startup request as being
defined by the Scalable Systems Software Project. This would be sort of cool. Validating XML
parsers in C exist.

Custom Format. We could define our own formats, so that we could express anything whatsoever.
We could use multiple formats to match other software that we might find it useful to be
compatible with, such as schedulers and other process managers.

Again, we might want to implement all three of these, since each has advantages. The quickest
option is the first. However, we could easily implement an XML-style version of keyword/value pairs
using a format such as

<MPICH keyword=value />

and have both the first and second choices at the same time.

A CH3 Routines and Data Structures

This section provides pseudocode for a TCP implementation of the CH3 routines.
General note: in if-else code, the most likely case should be placed first. This is both faster and

moves the most common code branch to the top, where it makes it easier to grasp the intent of the
code.

A.1 Data Structures

There are two primary data structures: one for virtual connections and one for the device as a
whole...needs revision...

Process Specific Information (CH3 Device).

typedef struct {
MPID_Request * recv_posted_head; /* List of posted receives */
MPID_Request * recv_posted_tail;
MPID_Request * recv_unexpected_head; /* List of unexpected receives */
MPID_Request * recv_unexpected_tail;

} MPIDI_Process_t;

The receive lists are held on the device to simplify handling of wildcard receives.

Process Specific Information (TCP Channel).

typedef struct {
MPIDI_CH3I_Progress_group_t * pg; /* My process group */

} MPIDI_CH3I_Process_t;

22

Process groups.

typedef struct {
volatile int ref_count;
char * kvs_name; /* name of the PMI keyval space */
int size; /* number of processes */
struct MPIDI_VC * vc_table; /* table of virtual connections

(one per process) */
} MPIDI_CH3I_Process_group_t;

Connections.

typedef struct {
int ref_count; /* number of comunicators using this

connection */
int lpid; /* local process ID for the partner

of this connection (used to
implement group routines)*/

MPIDI_CH3_VC_DECL /* channel fields */
} MPIDI_VC;

#define MPIDI_CH3_VC_DECL
typedef struct {

MPIDI_CH3I_Process_group_t pg; /* process group containing remote
process */

int pg_rank; /* rank in the process group */
struct MPID_Request * sending_head, /* Queue of pending sends */
struct MPID_Request * sending_tail;
MPIDI_CH3I_VC_state_t state; /* TCP connection state */
int poll_elem; /* element in the poll array */
int fd; /* fd for the socket (cached) */

} tcp;

The pending sends have a head and a tail pointer because it is a queue and we want the operations
of insert and delete on this queue to be fast.

A.2 Requests

CH3_Request_create returns a new request allocated from the request pool. The initial implemen-
tation uses the MPIU_Handle module to manage this pool. As a result, the id field in the request
structure automatically contains an integer handle for the request object that may be used as the
MPI_Request handle.

CH3_Request_create()
{

request = MPIU_Handle_obj_alloc(&MPID_Request_mem);
request->ref_count = 1;
return request;

}

This routine requires that MPIU_Handle_obj_alloc be thread safe in a multithreaded environment,
preferably without using locks.

Question: What should this routine do if it cannot allocate a new request? Is that a fatal error?
What about the fault-tolerant case? Should the code look something like

23

CH3_request_create()
{

request = MPIU_Handle_obj_alloc(&MPID_Request_mem);
if (!request) {

int limit = 200;
do {

CH3_Progress(0);
request = MPIU_Handle_obj_alloc(&MPID_Request_mem);

}
while (!request && limit--) {
if (!request) {

MPID_Abort() // Give up
}
request->ref_count = 1;
return request;

}

CH3_Request_destroy releases the resources used by an existing request back to the request pool.

CH3_Request_destroy(MPID_Request * request)
{

request->ref_count -= 1;
if (request->ref_count == 0)
{

MPIU_Handle_obj_free(&MPID_Request_mem, request);
}

}

This routine requires that MPIU_Handle_obj_free be thread safe in a multithreaded environment,
preferably without using locks.

A.3 iStartMsg

CH3_iStartMsg is called to send a message. It returns a request if the message is not completely sent.

MPID_Request *CH3_iStartMsg(MPID_VC *, void *header, int header_count)
if there is no active request on this VC

write the header.
if the entire header is written, return NULL
else /* see note below */

create a request
fill it in with the remaining data to write
make this the active request
return request

else
create a request
fill it in with the remaining data to write
add to the pending send queue
return request

One possible variation is to eliminate the “else” branch labeled “see note below” and let the code fall
through into else branch that creates and inserts the request into the pending send queue.

CH3_iStartMsgv(MPID_VC *, struct iovec *iov, int count)
Like CH3_iStartMsg, but for all of the data in the iov

24

A.4 iStartRead

This is used only in the handler for a put packet type. It reads data and generates a new request only
if not all of the requested data was read. It must be implemented only if CH3_Put is implemented.

CH3_iStartRead(MPID_VC *, void *buf, int count)
Try to read count bytes to buf
if (all read) return 0;
/* otherwise */
create a new request
request->active_buf = (char *)buf + bytes read
request->count_left = count - bytes read
return request

A.5 iSend

iSend it called to send data using an existing request. However, the data to send is passed in separately
(it is not part of the request).

CH3_iSend(MPID_VC *, MPID_Request *, void *buf, void *count)
if (!vc->sending_head) { /* no active send requests */

try to send data.
if (all sent) {

switch (request->comm_state)
0: request->cc--;

if (request->ref_count == 0) recover request
>0: (request->update)(request) /* effectively "invoke

MPIDI_CH3_Request_update(request)" */
}

else {
make active request
}

}
else {

request->active_buf = buf; request->count_left = count;
add request to top of pending send queue

}

The member cc of the request is the “completion counter”.
Question: Can we combine the reference count and the completion count, so that only a single

flag must be tested?
CH3_iSendv is like CH3_iSend, except a struct iovec is used instead of a buf,count pair. The

special action on a comm_state of zero is used to avoid the overhead of a function call in the common
case (for relatively short, contiguous messages) that no further work needs to be done.

A.6 iRead

iRead is used to transfer data into an already created request.

CH3_iRead(MPID_VC *, MPID_Request *request)
read upto request->count_left from fd associated with this VC

to request->active_buf
if (all read) {

switch (request->state)
0: decrement request->cc

remove from active list

25

if (request->ref_count == 0) place request on avail list
>0: invoke MPIDI_CH3_request_update(request)

}

A.7 iWrite

iWrite is called to continue a data transfer. This is used by the segment processing code to handle
the incremental packing and sending of noncontiguous datatypes.

CH3_iWrite(MPID_VC *, MPID_Request *)
if request is not the active request on this VC, internal error
try to write on fd associated with MPID_VC.
record amount of data written in request.
If all data written

switch(request->state)
0: decrement request->cc and remove this request from

the active list. If ref_count is 0, return request to avail
>0: invoke MPIDI_CH3_Request_update(request)

return

The request update routine handles incremental packing; typically, it uses MPIR_Segment_pack to
pack the next segment of bytes and then calls CH3_iWrite to continue writing the data (note that
the request is left on the active list in case some other thread want to start sending data on this
connection).

IMPLEMENTATION NOTE: The final case may result in deep recursion for large messages. This
problem must be solved eventually. For now, we simply verify that the call stack does not get too
deep and hope for the best.

A.8 Progress

The progress routine may be implemented on single-threaded systems as

CH3_Progress(int isblocking)
{

select/poll on all fd’s (wait is blocking, test is not)
For each fd, find associated MPID_VC. (perhaps using fd_to_vc[] array)
if (write) {

// fd was set because data is waiting
do {

send data described by active request in MPID_VC.
If (all data sent)

invoke request_state_method.
if no active send requests, clear need-to-write

} while (can write and pending writes)
}
if (read) {

do {
switch on state

case reading pkt hdr:
switch on packet headr

call fcn associated with pkt type
(These are MPID functions, not TCP functions,
since pkts are in MPID layer. Call them
MPIDI_CH3U_xxx)

end switch

26

case reading data to known address:
read more data.
if (complete)

invoke request_state_method
case establishing new connection:

... // this is the hard part, of course
end switch

} while (can read)
}

}

To make this more efficient, maintain the data structures needed with the poll or select calls with
the active fd’s: the ones on which there are either pending writes or on which connections for reading
have been established. Such a structure might include

typedef struct {
... whatever poll needs ...
int writes_pending;
...

} MPIDI_CH3_Progress_data_t;

The above version of CH3_Progress is for single-threaded implementations. Multi-threaded ver-
sions must keep track of whether any completions occurred after CH3_Progress_start was called.

An alternative to having the CH3 layer contain the progress engine is to define some additional
read and write routines at the CH3 level and then implement the progress routine in terms of those
calls. If there were such routines, they could also be used to implement MPID_Recv.

The routines CH3_Progress_start and CH3_Progress_end can be no-ops in the single-threaded
version. The routine CH3_Progress_poke can be CH3_Progress(0) (i.e., nonblocking call to
progress), and can be defined as a macro to avoid the function call overhead.

On multi-threaded systems, the implementation of the progress routines may use any of the usual
techniques, including condition variables.

A.9 Startup and Rundown

CH3_Init(int *has_args, int *has_env, int *has_parent)

This routine must

• Make any calls to PMI

• Set the size, rank, and MPID_VC fields in comm world and comm self

• Set the return values appropriately. has_parent should be set if there a parent communicator
that must be initialized.

CH3_Finalize(void)

This routine should free any memory and other resources.

CH3_InitParent(MPID_Comm *parent)

Initialize the size, rank, and MPID_VC fields in the communicator comm parent. CH3_InitParent is
called only if CH3_Init returned true in has_parent. This allows the implementation of MPI_Init to
create the parent communicator only if it is needed, and then initialize it in a separate step.

27

A.10 RMA

This section may be obsolete

CH3_iPut(MPID_VC *, void *buf, int count, MPID_RAint offset,
MPID_RAint cmpl_flag)

The remote addresses (MPID_RAint) cannot be of type MPI_Aint because MPI_Aint is the size of an
address on the calling system, not necessarily on the target system.

B Other Comments

One optimization that is mentioned in the MPICH-2 coding document [?] in the discussion of MPI_-
Sendrecv may be valuable to the TCP implementation. This involves piggy-backing rendezvous
acknowledgements onto data transfers where possible. For the case when sendrecv is used to exchange
data, this can reduce the number of separate communication steps. The design given here provides no
way to make this optimization. Question: do we want to allow an extension? What would it cost other
cases? Can we do it from within MPI_Sendrecv and/or MPI_Waitall in such a way that we don’t
penalize other communication patterns? What is the potential benefit? Should we just concentrate
on RMA instead?

An alternative model for the receiving end is a MPID_CH3_ReadProcess call that reads a packet
header and processes it. This is really just an active message or remote routine handler, and is roughly
the receiving end of the original ADI3 MPID_Rhcv (remote handler call - vector arguments) routine.
This has the advantage that fewer routines are defined, and in some sense, the code must be structured
like this (since arbitrary incoming packets may arrive).

28

	Introduction
	Outline of the Implementation Structure
	Remote Memory Operations in the CH3 Design
	Active target routines
	Passive target atomic operations
	Local passive target locks
	Passive target memory allocation
	Asynchronous operations

	Thread Safety
	Data Structures
	Utility Routines
	NonContiguous Datatypes

	Pseudo-code for some of the MPID routines
	Sending
	Receiving
	Completion
	Persistent Requests

	Pseudo-code for Message Handlers
	EagerSend
	RndvReqToSend
	RndvClrToSend
	Put
	RndvData
	CancelSend
	CancelSendAck
	FlowControlUpdate

	Message Queues
	Debugger Interface

	Implementing mpiexec
	CH3 Routines and Data Structures
	Data Structures
	Requests
	iStartMsg
	iStartRead
	iSend
	iRead
	iWrite
	Progress
	Startup and Rundown
	RMA

	Other Comments

